對于大家來說,人臉識別已經不陌生了。不管是蘋果,還是安卓都可以實現人臉識別功能。相信不久之后,人臉識別將變成主流。人臉識別系統也將越來越常見。下面小編帶大家一起來看一下關于人臉識別系統的幾個概念。
“人臉檢測(Face Detection)”是檢測出圖像中人臉所在位置的一項技術。
人臉檢測算法的輸入是一張圖片,輸出是人臉框坐標序列(0個人臉框或1個人臉框或多個人臉框)。一般情況下,輸出的人臉坐標框為一個正朝上的正方形,但也有一些人臉檢測技術輸出的是正朝上的矩形,或者是帶旋轉方向的矩形。
常見的人臉檢測算法基本是一個“掃描”加“判別”的人臉識別過程,即算法在圖像范圍內掃描,再逐個判定候選區域是否是人臉的過程。因此人臉檢測算法的計算速度會跟圖像尺寸、圖像內容相關。開發過程中,我們可以通過設置“輸入圖像尺寸”、或“小臉尺寸限制”、或“人臉數量上限”的方式來加速算法。
2. 人臉配準
“人臉配準(Face Alignment)”是定位出人臉上五官關鍵點坐標的一項技術。
人臉配準算法的輸入是“一張人臉圖片”加“人臉坐標框”,輸出五官關鍵點的坐標序列。五官關鍵點的數量是預先設定好的一個固定數值,可以根據不同的語義來定義(常見的有5點、68點、90點等等)。
當前效果的較好的一些人臉配準技術,基本通過深度學習框架實現,這些方法都是基于人臉檢測的坐標框,按某種事先設定規則將人臉區域扣取出來,縮放的固定尺寸,然后進行關鍵點位置的計算。因此,若不計入圖像縮放過程的耗時,人臉配準算法是可以計算量固定的過程。另外,相對于人臉檢測,或者是后面將提到的人臉提特征過程,人臉配準算法的計算耗時都要少很多。
3. 人臉屬性識別
“人臉屬性識別(Face Attribute)”是識別出人臉的性別、年齡、姿態、表情等屬性值的一項技術。
一般的人臉屬性識別算法的輸入是“一張人臉圖”和“人臉五官關鍵點坐標”,輸出是人臉相應的屬性值。人臉屬性識別算法一般會根據人臉五官關鍵點坐標將人臉對齊(旋轉、縮放、扣取等操作后,將人臉調整到預定的大小和形態),然后進行屬性分析。
常規的人臉屬性識別算法識別每一個人臉屬性時都是一個獨立的過程,即人臉屬性識別只是對一類算法的統稱,性別識別、年齡估計、姿態估計、表情識別都是相互獨立的算法。但新的一些基于深度學習的人臉屬性識別也具有一個算法同時輸入性別、年齡、姿態等屬性值的能力。
以上就是人臉檢測,人臉校準,人臉屬性識別的改變。人臉識別系統就是以這些技術為基礎,進行的。科技在不斷進步,相信人臉識別系統將越來越智能,行業的春天即將到來。